Training Recurrent Networks by Evolino

نویسندگان

  • Jürgen Schmidhuber
  • Daan Wierstra
  • Matteo Gagliolo
  • Faustino J. Gomez
چکیده

In recent years, gradient-based LSTM recurrent neural networks (RNNs) solved many previously RNN-unlearnable tasks. Sometimes, however, gradient information is of little use for training RNNs, due to numerous local minima. For such cases, we present a novel method: EVOlution of systems with LINear Outputs (Evolino). Evolino evolves weights to the nonlinear, hidden nodes of RNNs while computing optimal linear mappings from hidden state to output, using methods such as pseudo-inverse-based linear regression. If we instead use quadratic programming to maximize the margin, we obtain the first evolutionary recurrent support vector machines. We show that Evolino-based LSTM can solve tasks that Echo State nets (Jaeger, 2004a) cannot and achieves higher accuracy in certain continuous function generation tasks than conventional gradient descent RNNs, including gradient-based LSTM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Neural Network for Forecasting of Exchange Rates and Forex Trading

Expert methods, which widely applied for human decision making, were employed for neural networks. It was developed an exchange rates prediction and trading algorithm with using of experts information processing techniques Delphi method and prediction compatibility. Proposed algorithm limited to eight experts. Each of experts represented recurrent neural network, Evolino-based Long ShortTerm Me...

متن کامل

Investigation of financial market prediction by recurrent neural network

Recurrent neural networks as fundamentally different neural network from feed-forward architectures was investigated for modelling of non linear behaviour of financial markets. Recurrent neural networks could be configured with the correct choice of parameters such as the number of neurons, the number of epochs, the amount of data and their relationship with the training data for predictions of...

متن کامل

Evolino: Hybrid Neuroevolution/Optimal Linear Search for Sequence Learning

Current Neural Network learning algorithms are limited in their ability to model non-linear dynamical systems. Most supervised gradient-based recurrent neural networks (RNNs) suffer from a vanishing error signal that prevents learning from inputs far in the past. Those that do not, still have problems when there are numerous local minima. We introduce a general framework for sequence learning, ...

متن کامل

Evolino for recurrent support vector machines

Traditional Support Vector Machines (SVMs) need pre-wired finite time windows to predict and classify time series. They do not have an internal state necessary to deal with sequences involving arbitrary long-term dependencies. Here we introduce a new class of recurrent, truly sequential SVM-like devices with internal adaptive states, trained by a novel method called EVOlution of systems with KE...

متن کامل

Selection of orthogonal investment portfolio using Evolino RNN trading model

Investing in financial market require the reliable predicting of expecting returns, assessment of risk and reliability. Principle of portfolio orthogonality was using to reduce the risk of the investment. An artificial intelligence system may reveal new opportunities for using this principle. Prediction of recurrent neural networks ensemble is stochastically informative distribution, which is h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2007